Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Med (N Y) ; 2022 Oct 20.
Article in English | MEDLINE | ID: covidwho-2076533

ABSTRACT

BACKGROUND: Between November 2021 and February 2022, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Delta and Omicron variants co-circulated in the United States, allowing for co-infections and possible recombination events. METHODS: We sequenced 29,719 positive samples during this period and analyzed the presence and fraction of reads supporting mutations specific to either the Delta or Omicron variant. FINDINGS: We identified 18 co-infections, one of which displayed evidence of a low Delta-Omicron recombinant viral population. We also identified two independent cases of infection by a Delta-Omicron recombinant virus, where 100% of the viral RNA came from one clonal recombinant. In the three cases, the 5' end of the viral genome was from the Delta genome and the 3' end from Omicron, including the majority of the spike protein gene, though the breakpoints were different. CONCLUSIONS: Delta-Omicron recombinant viruses were rare, and there is currently no evidence that Delta-Omicron recombinant viruses are more transmissible between hosts compared with the circulating Omicron lineages. FUNDING: This research was supported by the NIH RADx initiative and by the Centers for Disease Control Contract 75D30121C12730 (Helix).

2.
Cell Rep Med ; 3(3): 100564, 2022 03 15.
Article in English | MEDLINE | ID: covidwho-1740281

ABSTRACT

We report on the sequencing of 74,348 SARS-CoV-2 positive samples collected across the United States and show that the Delta variant, first detected in the United States in March 2021, made up the majority of SARS-CoV-2 infections by July 1, 2021 and accounted for >99.9% of the infections by September 2021. Not only did Delta displace variant Alpha, which was the dominant variant at the time, it also displaced the Gamma, Iota, and Mu variants. Through an analysis of quantification cycle (Cq) values, we demonstrate that Delta infections tend to have a 1.7× higher viral load compared to Alpha infections (a decrease of 0.8 Cq) on average. Our results are consistent with the hypothesis that the increased transmissibility of the Delta variant could be due to the ability of the Delta variant to establish a higher viral load earlier in the infection as compared to the Alpha variant.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Humans , SARS-CoV-2/genetics , United States/epidemiology , Viral Load/genetics
3.
HGG Adv ; 3(2): 100084, 2022 Apr 14.
Article in English | MEDLINE | ID: covidwho-1586251

ABSTRACT

COVID-19 vaccines are safe and highly effective, but some individuals experience unpleasant reactions to vaccination. As the majority of adults in the United States have received a COVID-19 vaccine this year, there is an unprecedented opportunity to study the genetics of reactions to vaccination via surveys of individuals who are already part of genetic research studies. Here, we have queried 17,440 participants in the Helix DNA Discovery Project and Healthy Nevada Project about their reactions to COVID-19 vaccination. Our genome-wide association study identifies an association between severe difficulties with daily routine after vaccination and HLA-A∗03:01. This association was statistically significant only for those who received the Pfizer-BioNTech vaccine (BNT162b2; n = 3,694; p = 4.70E-11; OR = 2.07 [95% CI 1.67-2.56]), and showed a smaller effect size in those who received the Moderna vaccine (mRNA-1273; n = 3,610; p = 0.005; OR = 1.32 [95% CI 1.09-1.59]). In Pfizer-BioNTech recipients, HLA-A∗03:01 was associated with a 2-fold increase in risk of self-reported severe difficulties with daily routine following vaccination. The effect was consistent across ages, sexes, and whether the person had previously had a COVID-19 infection. The reactions experienced by HLA-A∗03:01 carriers were driven by associations with chills, fever, fatigue, and generally feeling unwell.

4.
PLoS One ; 16(8): e0255402, 2021.
Article in English | MEDLINE | ID: covidwho-1352705

ABSTRACT

Epidemiological and genetic studies on COVID-19 are currently hindered by inconsistent and limited testing policies to confirm SARS-CoV-2 infection. Recently, it was shown that it is possible to predict COVID-19 cases using cross-sectional self-reported disease-related symptoms. Here, we demonstrate that this COVID-19 prediction model has reasonable and consistent performance across multiple independent cohorts and that our attempt to improve upon this model did not result in improved predictions. Using the existing COVID-19 prediction model, we then conducted a GWAS on the predicted phenotype using a total of 1,865 predicted cases and 29,174 controls. While we did not find any common, large-effect variants that reached genome-wide significance, we do observe suggestive genetic associations at two SNPs (rs11844522, p = 1.9x10-7; rs5798227, p = 2.2x10-7). Explorative analyses furthermore suggest that genetic variants associated with other viral infectious diseases do not overlap with COVID-19 susceptibility and that severity of COVID-19 may have a different genetic architecture compared to COVID-19 susceptibility. This study represents a first effort that uses a symptom-based predicted phenotype as a proxy for COVID-19 in our pursuit of understanding the genetic susceptibility of the disease. We conclude that the inclusion of symptom-based predicted cases could be a useful strategy in a scenario of limited testing, either during the current COVID-19 pandemic or any future viral outbreak.


Subject(s)
COVID-19/pathology , Genetic Predisposition to Disease , Area Under Curve , COVID-19/genetics , COVID-19/virology , Cross-Sectional Studies , Genome-Wide Association Study , Humans , Phenotype , Polymorphism, Single Nucleotide , ROC Curve , SARS-CoV-2/isolation & purification
6.
Cell ; 184(10): 2587-2594.e7, 2021 05 13.
Article in English | MEDLINE | ID: covidwho-1157175

ABSTRACT

The highly transmissible B.1.1.7 variant of SARS-CoV-2, first identified in the United Kingdom, has gained a foothold across the world. Using S gene target failure (SGTF) and SARS-CoV-2 genomic sequencing, we investigated the prevalence and dynamics of this variant in the United States (US), tracking it back to its early emergence. We found that, while the fraction of B.1.1.7 varied by state, the variant increased at a logistic rate with a roughly weekly doubling rate and an increased transmission of 40%-50%. We revealed several independent introductions of B.1.1.7 into the US as early as late November 2020, with community transmission spreading it to most states within months. We show that the US is on a similar trajectory as other countries where B.1.1.7 became dominant, requiring immediate and decisive action to minimize COVID-19 morbidity and mortality.


Subject(s)
COVID-19 , Models, Biological , SARS-CoV-2 , COVID-19/genetics , COVID-19/mortality , COVID-19/transmission , Female , Humans , Male , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , United States/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL